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The Ranque-Hilsch effect, observed in swirling flow within a single tube, is a spon- 
taneous separation of total temperature, with the colder stream near the tube centre- 
line and the hotter air near its periphery. Despite its simplicity, the mechanism of the 
Ranque-Hilsch effect has been a matter of long-standing dispute. Here we demon- 
strate, through analysis and experiment, that  the acoustic streaming ,induced by 
orderly disturbances within the swirling flow is, to a substantial degree, a cause of 
the Ranque-Hilsch effect. The analysis predicts that the streaming induced by the 
pure tone, a spinning wave corresponding to the first tangential mode, deforms the 
base Rankine vortex into a forced vortex, resulting in total temperature separation in 
the radial direction. This is confirmed by experiments, where, in the Ranque-Hilsch 
tube of uniflow arrangement, we install acoustic suppressors of organ-pipe type, 
tuned to the discrete frequency of the first tangential mode, attenuate its amplitude, 
and show that this does indeed reduce the total temperature separation. 

1. Introduction 
The subject of acoustic streaming owes its origin to  Lord Rayleigh (1884); led by 

Faraday’s observation (1831) and the patterns in the Kundt tube, he showed that 
sound waves can and do generate a steady current through the action of Reynolds 
stresses, induced near the solid boundary by the periodic disturbances themselves. 
For a modern review of the subject in general we refer to  Lighthill ( 1 9 7 8 ~ ) .  

As yet, however, with the possible exception of Secomb (1978), the studies of stream- 
ing appear to  have been subject, to a common restriction that  the fluid be initially in 
a state of rest. 

I n  this paper we shall treat an acoustic-streaming problem which, by contrast, 
depends crucially on the motion of a gas. To be specific, for a swirling gas uithin a 
cylindrical duct, we submit that the ucoustic streaming of the gas with suirl produces the 
Ranque-Hilsch effect: the radial separation of total temperature. Although it  has generally 
- and often vaguely - been accepted that some form of unsteadiness is needed to 
interpret this perplexing phenomenon, the key to  the explanation is precisely this 
unforeseen mechanism of acoustic streaming, which is induced by orderly, periodic 
disturbances within swirling flows. We shall first demonstrate this analytically, and 
then confirm it experimentally. But, first, a discussion on the background is in order. 

Several years ago a striking phenomenon, with unusual features, accidentally 
revealed itself in a swirling-flow test rig called an annular cascade (Danforth 1877, 
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private communication; Rakowski, Ellis & Bankhead 1978; Rakowski & Ellis 1978). 
The whole apparatus was stationary and in the shape of an annular conduit formed 
between inner and outer casings; therein, air, having been made to  swirl by vanes, 
spiralled aft. A check-out test of the rig immediately disclosed the presence of a loud 
whistle, a pure tone, the level of which rose to a deafening intensity of 180 d?. The 
occurrence of this ear-splitting sound was all the more remarkable since, for one thing, 
none of the components of the rig was rotating; only air was in swirling motion. For 
another, the sound occurred eren before the installation of a test cascade; except for 
the swirl vanes, nothing lay in the way of the flow path. I ts  discrete frequency increased 
almost proportionately to swirl, from 350 to 500 Hz; the dynamic disturbance was 
spinning circumferentially with the first tangential mode, accompanied by higher 
harmonics. 

Most surprising of all, this infense pure tone in swirlingJEow induced a marked distor- 
tion to the steady-state or the time-atqeraged Components of thejowjield - its 'd.c.' parts. 
Accompanied by an increasingly louder whistle, the tangential velocity near the 
inner wall became, above a certain level, abruptly reduced to a considerable extent ; 
the radial profile, which had remained a free-vortex type (as it was designed to be), 
metamorphosed into one somewhat akin to a forced vortex. At the same time the 
total temperature, initially uniform at the inlet and equal to 36 "C, spontaneously 
separated into a hotter stream of about 48 "C near the outer wall and a colder 
one of 38 "C near the inner wall, with a radial difference equal t o  20 "C - strongly 
reminiscent of the Ranque-Hilsch effect. 

Because of the severity of these dynamic fluctuations, which posed a serious threat 
to the original purpose of the rig, the inner and outer walls were provided with tuned 
acoustic suppressors ; this did remove the unacceptable dynamic flow disturbances. 

Now that the unsteady fluctuations had been eliminated, what happened to  the 
profiles of steady flow 2 The answer was that the distortion i n  the velocity and temperaturp 
distribulion vanished. The  Ranque-Hilsch effect had gone. 

Acoustic streaming appears to have somehow deformed the steady flow field, both 
in velocity and temperature, and if so, then this phenomenon of arresting interest 
affords a singular insight into the mechanism of little-understood Ranque-Hilsch 
effects, which we shall discuss briefly below. 

We recall that in the Ranque-Hilsch tube (Ranque 1933; Hilsch 1947) or the vortex 
tube, compressed air enters a single straight tube through tangential injection nozzles. 
Once within the tube, the swirling air segregates by itself into two streams of different 
total temperature: the hotter air near the periphery of the tube and the colder air at 
the centreline, a separation effect already mentioned with regard to the annular 
cascade. In  the conventional counterflow Ranque-Hilsch tube, the cold air is extracted 
from an orifice located near the inlet, and the hot air escapes from the other end. 
Even by closing the cold orifice, however, the air flowing in only one direction can 
still produce the radial separation of total temperature ; this, called the uniflow type, 
will be adopted later for our analysis and experiment because of the simpler flow 
pattern. 

Although the existence of total-temperature separation in Ranque-Hilsch tubes is 
beyond any doubt, none of the theoretical explanations so far devised appears to have 
found unreserved acceptance. For example, the oft-cited turbulent-migration 
theory (\'an Deemtcr 1952; Deisslrr & Perlmutter 1960; Linderstiom-L;Lng 197 1)  
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fails to explain why the purported random radial migration of fluid lumps does not 
separate the total temperature in other swirling-flow apparatuses, which are equally 
turbulent and provided with the same tangential injection as the one for the Ranque- 
Hilsch tube; for example compare figure 3 of Batson & Sforzini (1970) with figure 4 of 
Hartnett & Eckert (1957). The other theories (Schepper 1951; Sibulkin 1962) appear 
to be open to equally serious objections. 

The experimental evidence mentioned on the annular cascade compels us to  turn 
towards acoustic streaming as an agent of the Ranque-Hilsch effect - the acoustic 
streaming induced through the Reynolds stresses that are caused by organized periodic 
disturbances rather than by stochastic, random motion. 

In the literature on the Ranque-Hilsch tube, allusions to the presence of intense 
periodic disturbances abound. Hilsch (1947), McGee (1950), Savino & Ragsdale (1961), 
Ragsdale (1961) and Kendall(l962) noted the disturbances of pure-tone type, whistle 
or scream. I n  fact, Savino & Ragsdale (1961) recounted an incident where a loud 
screaming noise was accompanied by 6-1 1 "C change in total temperature, a phenom- 
enon evocative of that experienced with bhe annular cascade. None of them, however, 
proceeded beyond the stage of making passing observations on it. 

To a certain extent, the work of Sprenger (1951) foreshadows ours in its spirit. In  
the Ranque-Hilsch tube with its hot end closed and only its cold end open, he measured 
periodic disturbances by spreading lycopodium to form a Kundt pattern. However, 
the pattern was apparently used to measure only the wavelength of discrete distur- 
bances, since he did not pin the Ranque-Hilsch effect down to any explicit mechanism. 
Rather, by appealing to the analogy of the resonance tube, he lat,er simply suggested 
(Sprenger 1954) that the organized unsteadinesst might produce the energy separa- 
tion. More t o  the point is the highly suggestive circumstance that led to the discovery 
of the vortex whistle by Vonnegut (1954). While engaged in experiments exploring 
the application of the Ranque-Hilsch cooling effect, Vonnegut (1 950) had observed 
the presence of a pure-tone noise. Although he did not connect it with a mechanism 
of the Ranque-Hilsch effect, from this hint he constructed a musical instrument - the 
so-called 'vortex whistle ' - where air, injected tangentially into a cylinder, swirls 
into a tube of smaller diameter. The sound thus emitted was found to have a discrete 
frequency proportional to flow rate, We recall that the frequency of the pure-tone 
noise in the similar swirling flow within the annular cascade was also proportional 
to the Mach number. 

With the preceding background description in mind, we go right to the heart of the 
present theory : acoustic streaming by the vortex ulhistle produces the Ranque-I-lilsch 
effect. 

Here we redefine the vortex whist'le in a broader sense as the pure-tone noise existing 
in any swirling flow, whether the fluid is cont.ained within a single pipe or an annular 
duct; it is characterized by a spiralling waveform such as cos (m6 + kz - w t ) ,  where 8 
and z are the circumferential and axial coordinates respect'ively, m and k are the 
corresponding wavenumbers and t is the time. w is a discrete fundamental frequency 
determined uniquely for given values of m ,  k ,  swirl and the axial velocity. 

The fact that the rotating fluid is endowed with a capacity t o  support such a 
spinning wave motion has long been est~ablished (e.g. Kelvin 1880; Greenspan 1968); 

t,heir possible connectioii with the rricrgy scpnration. 
Syred bt Be& (1972) also recorded regular s i i i ~ ~ n i d ~ l  fllwtllntions in the tube ant1 suggested 
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like other pure-tone noise in flow, the vortex whistle, latent in swirling flow, emerges 
out of the selective amplification of background disturbances. This pure tone, we 
submit, brings the total-temperature separation into being. 

Now this is not to suggest that the flow in the Ranque-Hilsch tube remains laminar; 
it is turbulent, But we shall argue and later verify experimentally (figure 5)  that  in 
the frequency spectrum, over and above turbulence, there soars a prominent peak 
of the vortex whistle possessing the discrete frequency w .  This organized disturbance 
dwarfs the random fluctuation, rendering the Iatter negligible by comparison. For a 
model problem of the Ranque-Hilsch tube posed as such, the frequency of the pure 
tone determined from the linearized inviscid solution will be found to increase propor- 
tionately to swirl. More important, w ,  thus calculated by neglecting the random compo- 
nents of disturbances, does agree closely with the measurement of the vortex whistle (figure 
6), with m = 1, the first tangential mode. 

From this linearized treatment we proceed to the second-order analysis in order to 
calculate streaming; this is, of course, the temporal average of nonlinear terms or 
products between linear waves like cos2 (me+ kx - wt), whose time-dependent parts 
take the form cos (2mB + 2kz - 2wt) - an induced, spiralling wave with its frequency 
and wavenumbers twice those of the vortex whistle. 

Concerning this unsteady part of the nonlinear terms, we confirm experimentally 
that such a second harmonic precisely in the above form i s  conspicuously in evidence in 
the data obtained from the Ranque-Hilsch tube. Its pre-eminence attests, and favours, 
the anticipated existence of its steady counterpart, or acoustic streaming, which the 
second harmonics must always keep in tow. 

Concerning the steady part of the nonlinear terms or acoustic streaming, we shall 
obtain its expression near a cylindrical surface in general form {equation ( 2 2 ) )  applic- 
able to any swirl, and not limited to the one in a single pipe of the Ranque-Hilsch 
tube. We regard this as the centrepiece of the analytical results. 

Applied to a model problem of the Ranque-Hilsch tube, where the base swirl 
initially imposed is assumed to be a Rankine vortex, the substitution of the calculated 
frequency w of the vortex whistle into the above expression reveals the following: 
the tangential streaming near the tube periphery is always in the same direction as 
the steady swirl. Thus the streaming adds to the base swirl, and the total d.c. 
component of swirl near the tube periphery grows in magnitude. This is particularly 
so at  lower tangential modes, since, as m decreases, the tangential streaming grows 
increasingly larger. This deforms the initial Rankine vortex, and a transition towards 
a forced vortex is now set in motion. The flow with the initially uniform total 
temperature becomes separated radially into a hotter gas near the tube periphery and 
a colder one near the centre. The Ranque-Hilsch eflect now takes shape. 

As mentioned, the vortex whistle in the Ranque-Hilsch tube turns out to be that 
corresponding to the first tangential mode, with m = 1. The pivotal point that  this 
wave does cause the temperature separation, indicated by the theory, will be con- 
firmed by the following test. On the Ranque-Hilsch tube, we install acoustic sup- 
pressors of the organ-pipe type (figure 7 ) ,  tunable to the fundamental frequency w 
of the vortex whistle, which corresponds to  the first tangential mode, m = 1. We thus 
attenuate the intensity of the vortex whistle at a tuned frequency, confirm that this induces 
the reduction of its second harmonic and, most important, verify that this does indeed 
reduce the  total-temperature separation. Figures 9-13 in 4 5.2  display such results. For 
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+.----i FIGURE 1. Definition sketch. 

instance, in figure 9 the acoustic suppressor was tuned to 4.0 kHz; a t  the moment 
when the fundamental frequency of the vortex whistle reached the tuned frequency, 
its level plummeted abruptly by 25 dB, which in turn reduced its second harmonic 
by 14 dB. At this instant, the cold temperature a t  the tube centreline, which had 
gone down as low as - 35 "C, immediately jumped to 0.6 "C - with a temperature 
rise equal to 35.6 "C. These results, more than anything else, seem to validate the 
heart of the present thesis. (Some readers may prefer to  pass directly to 5 5, which 
presents such results.) 

2. Statement of the problem 
Although our present investigation centres on a single pipe, here we formulate, in 

anticipation of future work on co-axial cylinders, the following general problem : 
acoustic streaming in either a single pipe or an annular duct between two circular 
cylinders. The latter case is sketched in figure 1, where ro denotes the radius of the 
outer cylinder, T i  that of the inner cylinder. For a single pipe, corresponding to the 
Ranque-Hilsch tube of uniflow type, ro still denotes the radius of the cylinder. The 
fluid is compressible and taken as a perfect gas. We assume that throughout the 
entire duct length L of interest, the two steady boundary layers formed over the 
cylinder surfaces are thin ; in the inviscid annular region bounded and contained by 
them, both the circumferential and axial velocities are the predominant components 
of steady flow, as shown in figure 1 .  Superimposed upon this steady flow are the fully 
three-dimensional unsteady disturbances, whose streaming effects we are interested in. 

Acoustic streaming is of course an induced steady or added d.c. component. As 
such, we have to distinguish it from the base steady flow initially imposed before the 
disturbances are set up. For brevity we henceforth refer to the latter simply as the 
steady part. Thus the flow a t  any point consists of three parts: the steady part, the 
a.c. components of the unsteady disturbances, and their d.c. components or streaming. 
The sum of the steady part and streaming is the total d.c. component. 

For symbols, we use the following: ( r ,  0, z )  are cylindrical coordinates with the 
corresponding velocity q = (u, v, w ) ; p  is the pressure, p the density, T the temperature, 
,u the coefficient of viscosity, v = p/p,  Pr the Prandtl number, y the ratio of specific 
heats; it turns out, to  the order in which we are interested, that the second coefficient 
of viscosity does not appear. Both the specific heat cp and Pr are taken, as usual, t o  
be constant; the viscosity law is 

,LC = / t(T).  ( '1 
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The boundary condition on the cylindrical surfaces is q = 0. The thermal condition 
depends, in general, on the details of unsteady heat transfer through a wall. For 
simplicity, we assume that either the wall temperature is maintained constant or 
the walls are insulated. 

We first consider the steady part of the flow field. We assume that the steady flow 
is axisymmetric, and apply the standard outer and inner expansion (Van Dyke 1962a, 
b )  in negative half-powers of the Reynolds number; we denote the leading term of the 
outer expansion or the inviscid flow by subscript 0. 

As usual, the matching yields uo = 0 on the walls, and henceforth we are interested 
in the case where 

uo = 0,  

a t  any point of the o&er or inviscid region. The rest of the leading terms of the outer 
expansion or inviscid flow are all taken to be functions of r only, independent of z 
(and of 8) ,  in view of the assumption of thin boundary layers. Then the only non- 
trivial component of the equation of motion is the radial equilibrium 

For the energy equation, we assume that the leading term of the outer expansion of 
entropy remains constant everywhere. 

The leading terms of the inner expansion of the steady part constitute of course the 
conventional compressible steady boundary-layer equations. On both cylindrical 
surfaces, the boundary layers are rotationally symmetric and develop in the z- 
direction. Their structures are complicated by the presence of two components of the 
inviscid stream : swirl and axial velocity. However, as shown later, insofar as we limit 
our attention to  the leading term of acoustic streaming a t  large Reynolds number, 
the details of the steady boundary layer need not be worked out. 

3. Small parameters and expansion series 
We now turn to the unsteady disturbances, upon which our emphasis lies. In  an 

effort to seek a tractable ingress to the problem, we assume that the a x .  components 
of the disturbances are organized, regular and endowed with a fundamental frequency 
w ;  in comparison with them, we neglect the stochastic part of the disturbances 
according to the discussion of $ 1 .  

Now the only known analytical method of obtaining streaming is to  resort to the 
use of an expansion scheme. To pave the way for the selection of the relevant small 
parameters, consider the linearized inviscid unsteady disturbances. Neglecting the 
second-order terms, from the set of equations (16a-g) in $4.1 we immediately 
recognize a fact of crucial importance: once a factor exp ( i d  + ikx - iwt )  is separated 
from the amplitudes of the disturbances, the frequency Q does not appear by itself, 
but arises exclusively in the modified form of 

This is only to be expected, because it' embodies the Doppler shift caused by the 
steady inviscid swirl v0 and the axial velocity wO. Note that the shift is dependent upon 
t'he radial position. 
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In  order to obtain acoustic streaming, these inviscid linear waves are to be imposed 
as external excitations upon the viscous flow near the walls; therefore, in forming a 
parameter containing a frequency, the relevant one is not the bare w, but the above f 
evaluated a t  the cylindrical surface. 

Henceforth, the leading term of the outer expansion of the steady flow, evaluated at 
R (the radius of the cylinder surface under study) is denoted by subscript e - the 
‘external’ flow at  the outer edge of the steady boundary layer; for instance 

be = vO(R), W, = u?o(R). 

Then the appropriate frequency parameter relevant to the acoustic streaming near 
R is given by 

where 
01 = c e / f e R ,  ( 5 a )  

V e  
f e  = -w+m-++w,, R 

and Ge is a measure of the unsteady disturbance, taken specifically as the amplitude 
of the linearized inviscid fluctuation (the ‘external’ unsteady flow) in the circum- 
ferential direction, evaluated at  the outer edge of the unsteady boundary layer. 

With respect to the lengthscale, in the problem at  hand, three characteristic lengths 
distinguish themselves: the radius R of the cylinder, the unsteady-boundary-layer 
thickness 6, = [ve/l f e l l+,  and the steady-boundary-layer thickness 6 = LRe-*, where 
Re is the Reynolds number based upon L. From the three lengths, we form two 
additional parameters p and c, defined by 

As regards 6, and P, the absolute value of fe is needed in the above ; for, as seen from 
(Sb) ,  its sign can and does switch, depending upon the relative magnitudes of w ,  ve 

and we. Note that as the steady flow varies the unsteady-boundary-layer thickness 
6, can change, even for a given frequency. For example, 6, may increase when f e  is 
decreased by an increase in ve only. What this implies is, in effect, that the unsteady 
boundary layer cun become thicker than the steady boundary layer, particularly at high 
Reynolds number. 

We direct our interest to a perturbation expansion where 

a,p,s < 1.  (8) 

Physically this may be visualized as follows. The amplitude of unsteady disturbances 
is small and, compared with the lengthscale of the cylinder radius, the unsteady 
boundary layer is thin. Within the unsteady layer an even thinner steady boundary 
layer is embedded.? Therefore, near any cylindrical surface the structure of the flow 

t We assume that, for the steady and unsteady boundary layer alike, the thickness of the 
thermal boundary layer is of the same order as that of the momentum boundary layer, Pr 
being aiound unity. 
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divides radially into three layers: ( a )  the steady boundary layer adherent to the wall, 
( b )  the middle layer, which stretches from the outer edge of the steady boundary 
layer to that of the unsteady boundary layer, and ( c )  the inviscid core outside the 
unsteady boundary layer. 

With regard to the governing equations whose flow variables are to be expanded in 
power series of a,  p and E in order to obtain the streaming, one should, in principle, 
start with the full unsteady compressible Navier-Stokes equations rather than the 
boundary-layer equations. The reason is as follows. 

As is well known, acoustic streaming stems from the temporal average of the pro- 
ducts between the first-order quantities. Thus, if we start from the conventional 
boundary-layer equations, which correspond of course to the first-order approxima- 
tion to  the full Navier-Stokes equations, questions may arise about the effects of what 
is collectively called the higher-order approximation to boundary-layer theory (e.g. 
Van Dyke 1969) on streaming. I n  this connection, upon treating the problem of 
streaming around an oscillating cylinder, Stuart (1966) justly voiced a note of caution 
on the possible effect of curvature, which could be of the same second order as 
streaming itself. I n  the present case we are besieged by more than one effect of 
possible second-order correction. For example, both steady and unsteady boundary 
layers formed over the cylindrical surfaces present the problem of a steady as well as 
an unsteady displacement thickness ; the fluctuation of temperature gives rise to 
changes in the viscosity which, coupled with a temporal variation in strains, might 
beget additional Reynolds stresses ; the flow being compressible, even the effect of 
the second coefficient of viscosity may have to be assessed, as has in fact been done 
by Van Dyke (19624 for steady compressible boundary layers. 

To face these problems once and for all, the present author (Kurosaka 1980) aban- 
doned the standard boundary-layer equations, and started afresh from the full 
compressible and unsteady Navier-Stokes equations, retaining even the second 
coefficient of viscosity. Under the conditions of (8)) the matched asymptotic expansion 
in a, p and 6 was used to ferret out the leading term of acoustic streaming, which was 
shown to be O(a); in the middle layer, the radial coordinate was scaled to 6,; and the 
steady flow fields, corresponding to those outside the steady boundary layer, were 
expanded around the values a t  its outer edge, in a manner analogous to the procedure 
of Cole (1968, p. 16). Then, in the middle-layer equations up to the order of a, the 
steady-jozu properties appear as constant evaluated a t  the outer edge of the steady 
boundary layer, rather than as the spatially changing variables, the reason being 
that 8, is  much smuller than the scale of the inviscid core, the cylinder rudius. As regards 
the region within the steady boundary layer, whose complexity has been pointed 
out in $2, the difficulty was circumvented by transferring the boundary condition on 
the unsteady flow from the wall to the innermost edge of the middle luyer; this in 
effect bypasses the steady boundary layer - a procedure wholly justifiable for 
O(a),  not to mention O(1) terms, because the ratio of the thickness of the steady 
boundary layer to R is O ( E ~ ) .  

The consequences of the matched asymptotic expansion are as follows. As far as 
the terms up to O ( a )  are concerned, the governing equations in the middle layer are 
independent of such second-order effects as surface curvature, steady or unsteady 
displacement, or of the second coefficient of viscosity. (That the leading term of the 
streaming near the boundary remains unaffected by surface curvature and unsteady 
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displacement is not unexpected from the analysis of Riley (1967), who confirmed this 
for an incompressible stationary-flow problem). I n  fact, the equations are none other 
than those derivable from the conventional boundary-layer equations - where the base 
steady-state variables are evaluated at the outer edge of the steady boundary layer, those 
with subscript e - and they are subject to the usual wall boundary conditions. 

In  the light of this justification and in an effort to avoid the inevitably elaborate 
algebra involved in starting from the full Navier-Stokes equations, we take the 
following standard boundary-layer equations as those governing the flow in t.he 
middle layer: 

aP - = 0, 
an 

a a v a  a 
L,=-+u-+--+w- 

at an Ra0  ax 

and n = r - R is the boundary-layer coordinate normal to the surface. 
I n  accordance with our preceding discussion and subject to  the restrictions imposed 

by (8), we expand the flow variables around those steady values with subscript e, 
the external flow a t  the outer edge of the steady boundary layer, in the form 

1 u = U ' + U f f +  ..., 
ZI = V ~ + V ' + V " +  ..., 
w = Ule+w'+w"+ ..., 

and so forth, where t je ,  we,  . . . are constants. The rest of t,he terms represents the un- 
steady disturbances; the single-primed terms, when divided by the amplitude of 
disturbances v"e, are O(1); the double-primed terms, rendered in the same form, are 
O(a);  for example 

0 ,  =1,  0 -  = a  (3 (;:) . 
The temporal averages of uN, vf f  and wff give the leading terms of the acoustic streaming; 
as mentioned, the terms corresponding to the O(p),  O(e) and other higher orders do not 
contribute to the leading term of the d.c. component, and are neglected in t'he above 
expansion. I n  accordance with our aforementioned conclusions drawn by the method 
of the matched asymptotic expansions, the boundary conditions for the unsteady 
disturbances are given, a t  n = 0, as 
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The flow in the inviscid core is, of course, governed by the following inviscid equa- 
tions : 

1 aP p h.i(v)+- = --- [ Y ]  rat,’ 

where 
a a v a  a 

L~=-+u-+---+uu,-* 
at ar rao  a2 

The corresponding expansions for the flow variables in the inviscid core are given by 

i u = u’+”’+ ...) 
2, = V0(”Zi’+2,’’+ ..., 
u, = ulo(r) + u” + 24,” + . . . , 

and the like, where the orders of the primed terms are the same as those in the middle 
layer, (11). 

4. First- and second-order problems ; streaming 
Substit,ution of the expansion series from 3 3 into the corresponding governing 

equations yields a set of equations appropriate for each order. I n  this section we 
assemble them in hierarchic order and present solutions, together with some comments 
on salient features. 

We set 
4.1. First order in inviscid core 

> (15) u‘ = c ( r )  ei(n?@+kZ-ot), v’ = c ( y )  ei(Vi@fkZ-ltJt) 

and so forth, and obtain the following set of linearized equations in the inviscid core: 
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B = c , ( Y - l ) ( P o ~ + T o p ” ) ,  

subject to the boundary condition 

E(r  = R)  = 0 ( R  = Ti ,  yo). 

In  deriving them, use is made of (3), and wo is assumed to be constant. 
Note that in the above the frequency w appears solely in the form off, defined by 

( 4 ) ,  as mentioned previously; once the profile of the steady swirl vo(r) is specified, 
(16a-9) are complete and determine w as a function of m, k and cylinder geometry. 
Such a frequency-swirl relationship, obtained by both an analytical and numerical 
method, is presented in the appendix for the specific swirl distribution corresponding 
to the Rankine vortex with a single pipe. 

Inspection of ( 1 6 )  also reveals that if 6 is imaginary, the other amplitudes, 2, 
@,p”etc.,are real: therealpartsofu’ andofall theothersoscillatewith aphasedifference 
equal to in. This implies that when we proceed to the second-order terms the temporal 
averages of the cross-products between u’ and any other flow variable must vanish. 

4.2. First  order in middle layer 
We set 

and so forth, and obtain the following linearized viscous equations in the middle layer 1 

ut  = $(%) ei(mO+kz-ot), f l l  = 2(n) ei(mO+kz-wt), (17 )  

where E e ,  as mentioned, is the amplitude of v’ in the inviscid core, evaluated on the 
cylinder surface ; the boundary condibions are 

~ = f i = ~ = o ,  T = O  or d p  
- = 0 
d n  (n = 0 ) ,  
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where (18b)  expresses the constancy of the pressure across the middle layer, and (18h) 
the matching of flow variables at its outer edge, where all are expressed in terms of 
f i e .  In1 --fa is to be interpreted in the usual matching sense, with the radial coordinate 
scaled to  6,; u: = cVy(y-  1) T,. 

Given ije, (18) is completely determined; the solution corresponding to  a thermal 
condition on the wall, 5? = 0, is given by 

where 
g = I-exp(-AlnJ),  h = exp(-PraA[nl), 

For a thermally insulated wall, the results can be obtained formally from (19) by 
letting Pr + co. With regard to  the fluctuating component of viscosity p' needed for 
the next second-order calculation, i t  is related to T' by the viscosity law 

We set 
4.3. Second order in middle layer 

1 2  
u'f = 2 + g [ A  (n) e2i(m0+kz-wt) 

I >  (20b) v f r  = ?+ g[B(n)  e2i(m0+ke-wt) 

and the like, where the first terms with overbars represent the temporal averages 
t>aken over a period of oscillation 2 n / w ;  9' denotes the real part. The leading terms of 
acoustic streaming correspond to these time averages, or d.c. components, which are 
functions of r only, independent of 0 and z .  The second terms of (20a, b )  correspond 
to the induced second harmonics, A(n) and B(n) being their amplitudes. 

I n  the corresponding governing equations we separate the d.c. components from the 
a.c. components, our interest being focused on the former. We first list those corres- 
ponding to the continuity, tangential and axial momentum equations and the equation 
of energy : 
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( 2 1 c )  

- [;-% -v-++or-  "I 
a:: 

- - - 
dv" . dw" dT" 

lim -= lirn - = lim - = 0 
~nj-m d n  Inl+m dn 1nl-m dn 

(n --f 00). 

As for the boundary condition for 1.1 -+ co, the original matching condition f o r 7  
reads 

where ml stands for the middle layer, ic for the inviscid core. The determination of 
streaming in the core will need this relationship; for the present middle layer, as in 
- the usual case (Riley 1967; Batchelor 1967, p. 360)) a weaker condition suffices: 
vk,(lnl -+ co) is finite, or equivalently the above dv"/dn 3 0. Similar conditions apply 
to W" and p; one does not need conditions for ii" a t  In1 -+ co. 

are completely and uniquely determined in the middle 
layer. These d.c. components of velocity and temperature are dependent upon only 
the first-order terms in the middle layer, and independent of the streaming in the 
inviscid core; on the contrary, the latter will be dependent upon the former, regardless 
of the magnitude of the streaming Reynolds number R,. 

The solution of (21 b )  yields v". Corresponding to the thermal boundary condition 
where the fluctuation of temperature on the wall is maintained to be zero, the tangen- 
tial streaming a t  the outer edge of the middle layer is given by 

- - -  
From (a l ) ,  dr, v", UY and 

-G(y--l)- Pr (3 Te )) (22a)  
Pr+l 2 TeSTi ' 

where G = (Efe/mae)2. (22 b)  

This we regard as one of our central results of analysis. 

I n  obtaining this, an explicit relationship between viscosity and temperature 
appearing in (199) is needed, and for this we have chosen Sut,herland's formula 

when p* is the viscosity a t  tjhe reference temperature T" and TI is, for air, 114 K. 
Once the frequency-swirl relationship - obtainable from the linearized equation 

in the inviscid core for a specified swirl distribution - is substituted in fc appearing 
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in the above and defined by ( 5 b ) ,  streaming is completcly determined; we note that 
vn/fi, is ~ ( a ) .  

The axial streaming is related to the tangential streaming by 

The streaming in the tangential and axial directions alike is independent of the 
actual value of viscosity, as expected. For our purposes we need not correct for the 
Stokes drift. We also emphasize that the expressions, as they stand, are not rest’ricted 
to  any specific radial profile of the steady flow field. 

The radial streaming is given as 

where + corresponds to  the streaming near the surface r = ri and - to r = r,;  the 
radial streaming is now dependent upon the viscosity. 

For a thermally insulated wall, the results can be obt’ained formally from the above 
by letting Pr -+ co: for example, the tangential streaming becomes 

We now pause and confirm that  the expressions (22 )  or (25 )  for the tangential 
streaming embrace the well-known results as their special cases. I n  the present repre- 
sentation of disturbances ei(mO+kz-wt), let k = 0, and in the place of 0 introduce the 
circumferential distance x measured along the perimeter of the cylinder. Thus the 
disturbance may be regarded as a plane wave travelling in the x-direction: ei(zx-wt), 
where 1 = m/R. Furthermore, we restrict our attention t’o a fluid otherwise in a state 
of rest: ve = u’e = 0. If the fluid is incompressible, G vanishes in the limit of ae -+ 

This is but a classical result of streaming a t  the outer edge of the unsteady shear layer 
(e.g. Batchelor 1967, p. 360). 

On the other hand, if the fluid is compressible, G is easily shown to be unity, and 
(25 ) ,  corresponding to a thermally insulated wall, is reduced to 

The second term in the curly bracket corresponds to  the streaming induced by the 
Reynolds stress that  is caused by the variation of the viscosity due to the temperature 
fluctuation, the first term on the right-hand side of ( 2 l b ) .  Numerically, this is by no 
means small; for instance, a t  Te = 20 “C = 293 K, the second term of (27 )  is equal 
to 0.62, compared wibh unity of the first term. This notwithst’anding, if we choose to  
ignore it’, (27 )  becomes 

(28 )  

which is equal t’o G:/4ae, also a classical result for compressible flow (e.g. Lighthill 
19783, p. 347). 

- la: 
v”(l.1 --f co) = - 

4w’ 
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Compare (28), the streaming induced by a one-dimensional wave in the absence of 
base flow, with our general result (22) or (25) for the cylindrical waves where the base 
steady flow is present. We note that the factors outside the curly bracket of (32) or 
(25) can immediately be obtained from (28) by replacing 1 by m/R, and w by f e .  The 
former corresponds, as noted, to the curvature effect. The latter is the Doppler effect 
apparent to an observer situated on the frame of reference in helical motion, advancing 
axially with we,  while rotating with 21,. 

This much settled, we now turn to the radial momentum equation and the equation 
of state, related to the temporal averages of the pressure 3 and density p“. I n  
contrast to the d.c. components of velocity and temperature, they cannot be deter- 
mined from the following corresponding equations of the middle layer alone : 

dp/dn = 0, P 9 a )  

2 = c,(y - I )  (peTN+-plTl + T p ) .  (29b) 

If we were to solve t h e m , F a n d  p‘; would have to be matched, a t  the outer edge of 
the middle layer, with the corresponding quantities in the inviscid core. 

4.4. Second order inviscid core 

Even in the core, we write the second-order disturbances in the form of (20); there, 
the temporal average term is still the leading term of the streaming in the core. 
Between the streaming in the middle layer and the inviscid core, the difference is 
that  the latter is now driven by the former. This remains so regardless of the value 
of the streaming Reynolds number R,, no matter how large or small (here R, is defined 
as R, = (ct/,8)2). However, as is now well known, the structure of the streaming out- 
side the unsteady boundary layer is strongly dependent upon Rs, as first pointed out 
by Stuart (1963, p. 384). 

If we take simply the temporal average of the second-order equations in the core, 
they, of course, correspond to the case of R, < 1, and are given by 

- 
u“ = 0, (30a) - 

v” v; 7 1 a - i - vO7 a? 
O Or r rar r r ar 

-2p v ----p +--(rpou’2)--pov’2-2-pv = --, 
- -  

r)“ = c,(Y- I )  (-poT”+p‘T’+Top”), 

with the boundary conditions 2 = 0 on the walls, and 
- - 
vrc(r = R) = &,(In1 -+ a), 

w;Jr = R)  = ukl(1nJ + 03)) 
- - 

iF& = R)  = %(In1 -+ a), 

with similar matching conditions for p a n d p ” ,  as stated a t  theend of $4.3.  In deriving 
them, we have taken due account of the phase relationship between u’ and others, 
stated in $4.1.  Missing from the above set is the energy equation which, once time- 
averaged, vanishes identically. The equation of continuity and the momentum equa- 
tions in 0- and z-directions all collapse to yield (30a). 

Since viscous terms are absent in ( 3 0 ~ )  b)  the equations are of inviscid type. 
Equations (30d, e )  correspond, however, to the boundary conditions on the ‘moving 
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FIGURE 2. Tangential streaming near the tube periphery of a single pipe ; 
A = 2 , K  = 0. 

wall'; the fluid in the inviscid core is set in spiralling motion by the streaming in 
the middle layer. Equation (30f) corresponds t o  the prescribed surface temperature. 
In  (30a-c), not only is the set of equations incomplete, but their depressed order 
ostensibly prevents them from satisfying the boundary conditions. However, this is 
in no way an indication of any kind of breakdown; the missing equations are to  be 
supplied from the terms of higher order than the present second order. That this is so 
can best be illustrated by referring to  the streaming induced by fluctuations in 
incompressible flow which is otherwise a t  rest. For vo = 0, we note that v7 or the 
tangential velocity is now completely lost from (30b)  or, for that matter, from every- 
where else. It can be recovered only from the consideration of higher-order terms ; in 
the terminology of the aforementioned matched asymptotic expansion of the present 
author, out of the viscous terms in the higher-order equations corresponding to 

aY? I' V4Y" = 0, where V" = -, 
ar 

which is the biharmonic equation originally due to Rayleigh (1884, p. 244) and de- 
rived anew by Riley (1967) using matched asymptotic expansions. 

The foregoing discussion illustrates the fact that  higher-order series terms in an 
expansion scheme are needed, in general, to determine the leading term of streaming 
in the core; this presents the entanglement of a formidable backward linking between 
terms in the series, as opposed to more direct forward linking. 

We now turn to the case of R, + 1. For incompressible fluid in the absence of base 
steady flow, the fundamental equation governing the exterior streaming was estab- 
lished by Riley (1967); it corresponds to the full steady Navier-Stokes equation, 
where R, replaces the Reynolds number; thus, in order to solve this problem, nothing 
short of numerical computations (Duck & Smith 1979; Haddon & Riley 1979) 
seems to be effective. In  the present situation of a compressible fluid where the base 
steady flow exists, there appears no reason to expect that  the governing equation 
would become simpler. 

In  the face of these complications, we shall make no attempt to derive streaming 
in the core, being content instead that the phenomena of interest can be explained, 

- fi ,0(~~,8~),  we obtain - 
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FIGURE 3. Layout of baseline configuration ; solid main tube. 

as seen shortly, by inspecting the change in behaviour of the streaming at the outer 
edge of the middle layer, whose lead the streaming in the core follows. 

5. Application to Ranque-Hilsch tube 

5.1. Frequency and results of streaming analysis 

As a model 'inviscid' steady velocity profile corresponding to a Ranque-Hilsch tube 

of uniflow type, we consider a Rankine vortex within a single tube represented by 

where I' = Qr*z, and r* denotes the radius a t  the interface between a forced and free 
vortex. We are interested in the unsteady disturbance with k -+ 0 and the first radial 
mode. 

As shown in the appendix, the frequency-swirl relationship for such a case, 
determined from linearized equations in the inviscid core, can be represented ade- 
quately by 

- + sign corresponding to m > 0 or m < 0 respectively. Although the relationship is 
derived by neglecting the second-order terms in the swirl, even at  a swirl Mach 
number near unity, this analytical expression still compares favourably with the 
numerical results of Sozou & Swithenbank (1969) (see appendix). The linear 
dependence of the frequency on the swirl is a singularly distinguishing feature of the 
vortex whistle in a single pipe discovered first by Vonnegut, (1954); see also Chanaud 
(1963, 1965). 

FLM 124 6 
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Inlet pressure (atmospheric gauge) 

FIGURE 4. Temperaturc measurement for solid main tube; L = 4.19 cm: m, inlet temperature; 
A, centreline temperature at  position b of figure 3 ;  0, centreline temperature at position a 
of figure 3. 

Substituting ( 3 2 )  into (22) or (25) and neglecting the second-order terms in the 
swirl, we obtain the streaming near the tube periphery: 

where 

and h = ro/r*. This holds regardless of the thermal conditions, adopted in deriving 
(22) or (25), on the tube wall. 

The above equation ( 3 3 )  shows that the streaming remains obviously the same even 
when m is replaced by -m, and furthermore it can readily be shown that its sign is 

always positive: - 
?I”( In1 -+ 00) > 0, 

no matter what the values of h and m may be. Positive values imply that the hngential 
streaming is in the same direction as the steady swirl; this in turn implies that  stream- 
ing near the tube periphery augments the steady swirl. The magnitude of such stream- 
ing increases as the circumferential wavenumber rn decreases. Figure 2 illustrates this, 
where 6 of ( 3 3 b )  is drawn as a continuous function of the circumferential wavenumber 
(though in reality, of course, i t  takes only integer values); h is taken to be 2. Observe 
the increase of 6 as m is decreased; a t  m = 1 , C  grows infinitely large, whatever h may 
be, as is easily seen from ( 3 3 ) .  

This added tangential velocity near the tube periphery converts the original 
Rankine vortex into a forced-vortex type. Even disregarding momentarily the effect 
of the static temperature gradient, t,his metamorphosis towards a forced vortex on its 
own tends to separate the total temperature: the colder stream near the centre and 
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the hotter stream near the periphery of the tube. This is precisely the onset of the 
Ranque-Hilsch effect.. 

As for the static temperature distribution, which in the inviscid core is determined 
by the total swirl, the static temperature for a forced vortex with sufficiently higher 
speed close to the periphery is lower than that of the Rankine vortex, provided that 
the temperature near the tube wall remains the same. This difference in static tem- 
perature further separates the total temperature. 

Obviously, our analysis aims only a t  the onset, of total-temperature separation. We 
6-2 
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FIGURE 6. Fundamental frequency for solid main tube: 
-, calculated; 8, L = 4.19 cm; 0, L = 1.27 em. 

rest content to exhibit the initial conversion of swirl distribution, based upon the 
acoustic streaming, to a forced-vortex type and give no detailed calculation of the 
final equilibrium flow field. 

Equation (33) further asserts that  such a conversion of swirl should take place 
regardless ofthe speed ofthe suiirZ,f and regardless of the axial position within the tube, 
even near its inlet. This appears to  fit in well with the previous observations: detailed 
measurements in the Ranque-Hilsch tube indeed show that a forced vortex is always 
found at  any speed of swirl, and is formed immediately near the entrance to the tube 
even a t  a location as close as practically possible to the inlet nozzle (Hartnett & 
Eckert 1957; Scheller & Brown 1957; Lay 1959; Savino & Ragsdale 1961; Sibulkin 
1962; Takahama 1965; Bruun 1969). The forced vortex occupies almost the entire 
cross-section, except of course for the neighbourhood of the boundary layer on the 
tube periphery. The radial separation of total temperature right a t  the tube entry, 
induced by the formation of the forced vortex, is also found by many experimenters. 
Contrast this with the ill-founded hypothesis of a gradual deterioration of a free 
vortex to  a forced vortex in the direction of flow, which, although advocated as a 
mechanism of total temperature by Hilsch (1947) and Knoernschild (1948), has 
never been observed. 

As stated, 5 becomes infinitely larger a t  m = 1, and obviously the analysis formally 
breaks down here. Despite this, we may expect that  the trend of large streaming and 
the resulting total-temperature separation are indicative of what actually happens 
in a real flow. This we anticipate in analogy with the other similar resonance-like 

t Although the presence of the steady swirl in the denominator might convey the false im- 
pression that, as the swirl increases, the amount of streaming and hence the separation of the 
total temperature becomes less, what actually happens is that the amplitudc of the disturbance 
Ge grows faster, resulting in the net increase in d’. 
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FIGURE 7. Layout of modified test rig; perforated main tube with acoustic suppressors. 

phenomena; in the spirit of the present investigation, we make no attempt to expend 
any elaborate computational effort on this, and instead we proceed to verify this 
directly by experiments described next. 

5.2. Experiments 

As a prototype of the test rig, a commercially available Ranque-Hilsch tube (Vortec 
Corporation, model no. 328-50) was acquired: in its original form a main pipe of 
22.9 cm length and 1.75 cm diameter was connected to a manifold section, where a 
swirl generator, with four tangentmially drilled slots inclined 72" from the radial 
direction, was housed. Pressurized air entered the manifold and separated into two 
counter-flows: the open end of the main pipe, where a flow-controlling globe valve was 
placed, served as the exhaust for the hotter air, while the colder air discharged from 
an opening placed a t  the other end of the manifold. 

5.3.1. Baseline conjguration and measurements. Subsequently, two modifications 
were added to the prototype. First, the cold end in the manifold was completely closed 
up by a Teflon plug; the air discharged only from the main pipe. This change to a 
uniflow arrangement was made to ease a direct comparison with the analytical model. 
Secondly, on the basis of the previous discussion, where we stated that the main 
pipe need not be long to create the total-temperature separation, the initial tube of 
L = 22.9 cm was replaced with a shorter brass tube of 4-19 cm. Figure 3 shows the 
entire layout of this uniflow test rig, which served as our baseline configuration. 

With the length of the main pipe thus shortened, it was found that the use of the 
original globe valve a t  the end of the main pipe seriously affected the intensity of the 
pure-tone noise. Since the rig was eventually to be further modified so as to reduce the 
pure tone by the installation of acoustic suppressors, it was necessary to minimize 
such an acoustic interference in this baseline configuration. At the same time, however, 
a provision of some form of block at the end of the main pipe was required to prevent 
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FIGURE 8. Temperature and acoustic measurement for perforated main tube with acoustic 
suppressors; 2 = 0 mm; n, inlet temperature; 8, centreline temperature at position b of 
figure 7 ;  0, centreline temperature at position a of figure 7. 

the entrainment of the ambient air into the test section, which would otherwise have 
occurred owing to the lowered pressure a t  the core of the vortex. To meet these con- 
flicting requirements, several conical shapes with different geometry were tried; 
among them the one with a contour shown in figure 3 was selected to  block the 
entrainment. Unless otherwise stated, the tip of the block was always placed in the 
exit plane of the main pipe. 

The pressurized air supplied from a separately located high-pressure tank entered 
the manifold via a pressure regulator, a flow-metering orifice and a sound muffler. 
The entire test assembly was housed inside a reverberation chamber. 

A shielded type Chromel-Alumel thermocouple of 1.6 mm diameter (Omega 
SCASS-OG2G-6) was inserted through the cold-end plug. By moving it in the axial 
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FIGURE 9. Temperature and acoustic measurement for perforated main tube with acoustic 
suppressors; I = 1.02 om: m, inlet temperature; 0,  centreline temperature at  position a of 
figure 7. (a ) ,  ( b ) ,  (c )  and (d) correspond to those of figure 10. 

direction, the temperature a t  the centreline of the tube was traversed (see figure 3). 
A condenser microphone of 6.4 mm diameter (Bruel & Kjaer Type 4135), mounted 
nominally 91 cm away in the exit plane of the main pipe, monitored the sound; its 
output was fed into an FFT high-resolution signal analyser (Bruel & Kjaer Type 
2033). 

Figure 4 presents the dependence of the cold temperature a t  the centreline, 
together with the record of the inlet temperature. Two cold-temperature measure- 
ments are shown: one at the position where the thermocouple was flush with the cold- 
end plug (position b of figure 3) and the other a t  12.7 mm away from it (position a). 
The latter corresponded to the coldest spot along the centreline. Observe that it 
went down as low as - 45 "C. The presence of the coldest spot near the entrance to 
the main pipe agrees with the findings of others, referred to in $5.1;  as stated, 
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FIGURE 10 (a, b) .  For caption see facing page. 

if the acoustic streaming is indeed a mechanism, it should cause the total-temperature 
separation even near the tube entrance. Note also in figure 4 that, as predicted, the 
temperature separation occurred even a t  low inlet pressure. 

Figure 5 exemplifies the narrow-band frequency spectra, where we immediately 
recognize the predominant peaks of the first harmonic, with frequency f = w / 2 n  and 
its higher harmonics. The pure tones indeed overshadow the background noise, as 
postulated in 9 I and the analysis above. The two spectra of figure 5 at different inlet 
pressures illustrate, by comparison, the point that f increases as the inlet pressure is 
raised; note also the increase of the sound level a t  higher inlet pressure. A complete 
removal of the entrainment block from the main-pipe exhaust did not change f. 

The tangential wavenumber m of the pure tones was determined by placing two 
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FIQURE 10. Frequency spectra for perforated main tube with acoustic suppressors; 2 = 1.02 cm: 

(a)  inlet pressure = 1.70 (atmospheric gauge), (b)  2.31, (c) 2.38, (d) 2-72. 

microphones at different circumferential positions around the exhaust and in the 
exit plane of the main pipe and by measuring their phase difference $Y in the following 
ways : (i) observation of Lissajous figures displayed on a dual-beam oscilloscope, and 
(ii) direct measurement of $ by a phase meter (Wavetek Model 750). By filtering 
only the signal corresponding to the fundamental frequency f, from two microphones 
placed 180" apart, $ was found to be 180"; when they were 90" apart $Y = 90". This 
means m = 1 for f; the pure tone with f corresponds to the first tangential mode of a 
spinning wave or the vortex whistle. The result is consistent with the measurements 
of Chanaud (1963) made for Vonnegut's 'vortex whistle'. 

As for the second harmonic, by changing the filter frequency to Zf, from two 
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microphones placed 90" apart, y9 was found to be 180"; for 45" apart y9 = 90". Thus 
the wavenumber for 2 f is nz = 2 .  The doubling of the wavenumber when the frequency 
is doubled corresponds unmistakably to the induced harmonics as exemplified by the 
second terms of (20a ,  b ) ,  whose form is applicable to  the inviscid core as well: this 
attests to the presence of the second-order disturbances, as expected from analysis. 
The wavenumbers of the third and fourth harmonics were identified, in a similar 
manner, to be equal to m = 3 and 4 respectively. 

Concerning the first harmonic or the vortex whistle, by sett'ing m = 1 (32) reduces to 

This special formula appears to have first been obtained by Sozou & Switlienbank 
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FIGURE 12. Temperature and acoustic measurement for perforated main tube with acoustic 
suppressors; 2 = 1.52 cm: a, inlet temperature; 0, centreline temperature at  position a of 
figure 7.  

(1969), who apparently found it from inspection of their numerically computed 
results; see their figure 8 (u). Given circulation r and the radius of the pipe T o ,  we can 
predict from (34) the frequency-t - fortuitously even without measuring r*, the radius 
of the interface in a Rankine vortex. I' may be estimated by assuming that its value 
around the tube periphery is equal to that around the circumference at the exit of the 
swirl generator. (Given the injection angle and injection-hole area, the tangential 

t Although the formula is derived for a Rankine vortex, it is also applicable to an actual 
forced vortex, which, on the evidence of the aforementioned measurements by previous investi- 
gators, is certainly formed within the present tube. The reason is that, because of the presence 
of the boundary layer near the tube periphery, any existent forced vortex is in effect a Rankine 
vortex with an enlarged region of a forced-vortex zone. 
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FIGURE 13. Temperature and acoustic measurement for perforated main tube with acoustic 
suppressors; 2 = 2.03 em: 0, inlet temperature; 0, centreline temperature a t  position a of 
figure 7. 

velocity is estimated by the volume flow determined from the mass flow and a static 
pressure tap installed on the cold-end plug.) The frequency f thus calculated is shown 
in figure 6, together with the measured value corresponding to the tube length of 
4.19 cm. Although the agreement may not be unreasonable, the obvious discrepancy 
is noticeable, and it was felt that, this might be due to the slowdown of swirl through 
the pipe. Therefore a shorter version of the main tube L = 1.27 cm was constructed 
and tested; although the frequency peaks were not as distinct as that  for 4.19 cm, 
they were still well defined. The measured first harmonic, presented also in figure 6, 
now shows an excellent agreement with theory. 

5.2.2. Perforated main tube with acoustic suppressors. Upon the completion of the 
baseline tests, the main tube of smooth brass was replaced with a perforated tube of 
the same diameter and length (figure 7) ;  the tube was encased in an intermediate 
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Teflon section, where acoustic cavities of 4.4 mm diameter, 8 in the axial and 12 in 
the circumferential direction, were drilled out. By inserting tuning rods of Plexiglas 
(6.4 mm long) into each cavity and varying its cavity length 1 the vortex whistle 
could be attenuated a t  any tuned frequency f t .  In order to reduce leakage, the inter- 
mediate section was covered by a sheath of Teflon and, furthermore, the entire test 
section was fastened by clamps. 

With regard to the perforation on the main tube, holes of 1.2 mm in diameter were 
drilled out on the brass tube. In  the initial arrangement, holes formed a staggered 
array, 45 rows in the circumferential direction and 25 in the axial direction. With the 
intermediate Teflon section fitted on the perforated tube, those holes on the tube 
that did not match with the acoustic cavities were identified and refilled with fibre- 
glass filler in order to remove any unnecessary irregularity on the inner surface of 
the main tube. By this means, on the average a group of six holes upon the brass 
section matched with each acoustic cavity; over the main tube, the porosity became 
about 27 %. 

These modifications, achieved after considerable trial and error, were found to suit 
our purpose: to reduce the vortex whistle as sharply as possible a t  the tuning frequency. 

To ensure that the modification of the main tube from a smooth surface to a per- 
forated one did not inadvertently alter the temperature separation, a test was run 
first with all cavity lengths set to zero. The results are shown in figure 8. Compared 
with the smooth tube, only the frequency was found to be noticeably affected, lowered 
by some 20 %, as might be expected from the slowdown of swirl due to the irregularity 
on the internal surface of the perforated tube. The cold temperature, measured at  
the coldest spot (position a of figure 7) was slightly higher for the perforated tube, 
and the sound level of the second harmonic slightly lower, but all in all they remained 
essentially unaffected; the peaks of the pure tones on the frequency spectra were as 
distinct and dominant as those for the smooth tube. Thus the perforated tube with 
zero acoustic cavity length still retained the characteristics of the smooth tube. 

Next, the length of all the acoustic cavities was set to 1.02 cm and the thermo- 
couple was left a t  the coldest spot. As the inlet pressure was slowly increased, the 
temperature a t  the cold spot kept on dropping, and a t  the same time both the frequency 
and intensity of the vortex whistle kept on increasing, as in the case of zero cavity - 
until, a t  f = ft = 4 kHz, all of a sudden the sound became quieter, changing from a 
shrill whistle to a muffled hiss. At this instant, the cold temperature, which had gone 
down as low as -35 "C, immediately jumped up to 0.6 "C, with a temperature rise 
equal to 35.6 "C. The results are presented in figure 9, where, in addition to the 
temperature jump, the drops in the level of the first and second harmonics are shown. 
For the first harmonic, AdB, = 25 dB, for the second harmonic AdB, = 14 dB. 

We display the successive change of frequency spectra around the present 
f t  = 4.0 kHz in figure 10: (a )  corresponds to f = 3.5 kHz, below f t ,  ( b )  f = 3.9 kHz, 
just below ft, (c )  f = f t  = 4.0 kHz, right a t  the tuned condition, and ( d )  f = 4.2 kHz, 
above f t .  (The points corresponding to (a)-(d) appear in figure 9.) Comparison of the 
spectra clearly shows the following: the pure tones retained their spiky peaks right 
up to f t  ( b ) ;  once f = f t  (c) ,  they suddenly became diminished and less distinct - 
'spires' were lost. At the same time, the bases of the pure tones, as measured by the 
externally placed microphone, appear to become broadened (' haystacking ' ) . Note 
also that between (b )  and (c )  the background noise level remained virtually the same. 
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As the frequency was increased further ( d )  the pure tone started to recover its spires. 
At the same time the cold temperature started to drop once again, as seen from 
figure 9. 

We observe that at f t  the reduction of the sound level of the first harmonic, to whose 
frequency the cavity length was tuned, did cause the reduction in the second harmonic 
as well; this appears to add one more telling piece of evidence that the second harmonic 
is induced by the first harmonic. Most importantly, the reduction of the jirst harmonic 
with m = 1 and its second harmonic did in fact reduce the temperature separation, as 
predicted by analysis. 

We cannot emphasize too strongly that  the jump in temperature was not caused 
by any sudden change in the inlet temperature; the latter remained the same near ft, 
before, after and in between, as is evident from the data shown in figure 9. Repeated 
tests confirmed that, once f approached f t ,  just a slight increase in the upstream 
pressure precipitated the sudden reduction in noise level; or as was often the case, 
even when the upstream pressure was held constant, with f maintained equal 
toft ,  the precipitous drop in level took place spontaneously. Once the sound level 
became reduced and colder temperature shot up to a higher value, both stayed on 
that level until the upstream pressure was increased further. 

Another phenomenon, compellingly evocative of the effect of acoustic streaming, 
could be easily perceived by sticking a finger near the exhaust : below the tuning range, 
the flow discharging from the end of the main pipe was spiralling, outward and radially, 
over the end plate of jigure 7 ; the region near the tube centreline uus relatively quiescent - 
reminiscent of the eye of a hurricane. At the tuned condition, the swirling air suddenly 
rushed out along the tube centreline; the region over the end plate then became quieter. 
This appears to bear vivid testimony to the expected reversion of the forced vortex 
to a Rankine vortex. 

The data shown in figure 9 were taken with the cold-end thermocouple placed a t  
the coldest spot (position a of figure 7 ) .  To confirm a point that the intrusion of the 
thermocouple did not inadvertently trigger the aforementioned sudden change, the 
thermocouple was withdrawn and placed flush with the cold-end plug (position b)  ; 
then nothing lay in the way of the flow path. The results are shown in figure 11 : a t  
the same f t  as in figure 9 the sound level plummeted down again, accompanied by a 
temperature rise; the only major difference is the reduced amount of temperature 
jump, which corresponds to the higher temperature level at  position b. 

Figures 12 and 13 correspond to the cavity lengths of 1.52 and 2.03 cm, respectively; 
the cold-end thermocouple was placed a t  position a again. Other than the fact that f t  

decreased as E increased, as expected, the basic features remained the same (the 
withdrawal of the thermocouple to position a again reproduced similar results). 

Since the attenuation of the pure tone at, f t  did not completely suppress the vortex 
whistle, as is evident from figure lO(c), by decreasing its intensity further it would 
appear possible to reduce the temperature separation further. I n  light of this - and 
although the temperature separation in the Ranque-Hilsch tube is not entirely 
attributable to the acoustic streaming induced by the vortex whistle, since the inner- 
most core of any Rankine vortex must have total-temperature gradient caused by 
viscous stresses - it does not go too far to say that, for a vortex tube of uniflow type, 
the vortex whistle is in large part responsible for the Ranque-Hilsch effect. 

An effort to obtain the radial dist'ribution of temperature and pressure had to be 
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aborted, since the radial immersion of a probe into flow was itself found to cause 
severe interference with the measurements; a similar difficulty was also reported by 
Reynolds (1962). In  this connection, a similar, repeatedly observed point is worthy 
of note: the excitation of the vortex whistle to a level sufficient for a significant degree 
of temperature separation depends strongly on the internal geometry of the tube. 
For example, in an experiment with a solid, non-perforated tube, a thermocouple of 
3.2 mm diameter was axially inserted from the exhaust to a point near the tube 
entrance; at that axial location, as the thermocouple was being moved radially 
towards the tube periphery, suddenly the vortex whistle vanished, resulting in the 
reduction of temperature separation again. When the thermocouple was either 
retracted towards the centre or withdrawn axially, the sound re-emerged, accom- 
panied by the recovery of temperature separation. The impression gained by this 
and other similar incidents, which include the aforementioned difficulty of the radial 
immersion of the probe, is that the vortex whistle is always latent, but a certain subtle 
change in the internal tube geometry either excites it to a sufficient level or fails to 
do so. Although any exhaustive investigation into this is beyond the scope of the 
present investigation, the following fact is highly suggestive : in the commercially 
available Ranque-Hilsch tube the internal surface of the tube is slightly tapered to 
form a short diffuser section near the entrance to the main pipe (for the performance 
of this see Takahama & Yokozawa 1981). 

6.  Concluding remarks 
I n  sum, departing radically from previous theories, we have demonstrated through 

an analysis and experiments that the acoustic streaming caused by the vortex whistle, 
a spinning wave with a discrete frequency in swirling flows, is in great part responsible 
for the Ranque-Hilsch effect in the vortex tube of uniflow type : near the periphery 
of the tube, the induced ‘d.c.’ tangential velocity adds to the steady swirl, trans- 
forming the latter to a forced vortex and leading to the total-temperature separation 
in the radial direction. 

To the extent that  the temperature separation arises owing to the unsteadiness in 
flow, the present subject is the converse of the phenomena of Rijke tubes and thermally 
driven acoustic oscillations of liquid helium (e.g. Clement & Gaffney 1960), where the 
difference in the temperature gives rise to unsteady disturbances. I n  a broader context, 
to the extent that  we seek in the present mechanism an organized origin distinct from 
the stochastic process, this falls under the same morphological group as the study of 
the Iarge-scale structure in a mixing layer (Brown & Roshko 1974). 
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Goldstein and W. H. Heiser and Mr P. R. Gliebe for helping him to clarify several 
points by raising pertinent questions ; to referees and Drs Caruthers and Maus for 
providing valuable comments on the original manuscript ; to many other investigators 
on related subjects, for answering his various queries about their work. The work is 
supported by the Air Force Office of Scientific Research under contract no. 
F49620-78-C-0045. 
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Appendix 
In  this appendix, we obtain from (16) the frequency w corresponding to the steady 

swirl prescribed in 9 5.  
For the radial profile given by ( 3 1 ) ,  the boundary conditions for the unsteady distur- 
bances are 

fi(r = ro)  = 0, P , f i  continuous a t  r = r*. (A 1) 

For a two-dimensional flow, Sozou & Swithenbank (1969) calculated the corres- 
ponding frequency relationship by a wholly numerical computation. (Although, as 
stated in $4.1, the axial velocity is a t  present allowed to exist, as long as k is set equal 
to zero, wo drops out of (4) and the situation is the same as a two-dimensional flow.) 
Here we offer an approximate analytical representation, choosing p” as the primary 
dependent variable. 

In  the innermost core of the forced-vortex region defined by 0 < r < r*, we 
combine (16~- f )  together and obtain the following single equation : 

= 0, (A 2 4  

where uo(r), A,, and D are given by 

ut(r) = ut(r = r,)+l(y-l)[na(r2-r*z)-ya (A 2 b )  

A,= Qm-w, (A 2 c )  

D = (Dm - w)’-  4D2, 
and .ii is related to p” by 

On the other hand, in the free-vortex region defined by r* -= r < T o ,  the governing 
equation is given by 

dr2 r a,2(r)r3 
azp” -+[-+ i pY-3)r2 

m2 2 m ( 2 y - 3 ) r 3  ~ ( w L I ’ ) ~  4mr 2 ( 2 - y ) P  +[---+ +--- + 
r2 h,(r) r6ug(r) Ai(r) rS h,(r) r4 ag(r) 9-4 

where 

u,2(r) = u$(r = To) - i ( y -  1 )  r2 

m r  
r2 A,(r) = -- 0, 

and fi is related to p“ by 

Equations (A 2u) and (A 3u) are the same as that obtained by Kerrebrock (1977). 
We expand p”, fi and w in the power series of D : 

p” = p‘0’ + Qp“’+ . .., (A 4 4  
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.ii = d o ) +  QZu(l)+ ..., 

w = d o ) +  QO(l)+ ... . 
(A 4b) 

(A 4c) 

We confine our attention to do) = 0, which corresponds to the lowest eigenvalue for 
the case without swirl. We substitute (A 4u-c) into the aforementioned governing 
equations for p" and retain the terms up to O(Q). This yields the following expression 
for ~(1): 

w(1) = f (Iml - 1 +h-2iml), (A 5 4  

w = (JmJ -- 1 + h-21mi) Q, (A 5b) 

where h = ro/r*, and w becomes from (A 4c) 

where the + sign corresponds to  m > 0, and the - sign to m c 0. 
Sozou & Swithenbank (1969) list the computed values w in their table 3; in our 

table 1, we compare their results with our analytical formula (A 5 b ) ,  the latter being 

Or* - 
ado) A 
0.10 1.09 
0.10 1.5 
0.10 5 
0.25 1.09 
0.25 1.5 
0.25 5 
0.50 5 
0.75 5 
1.0 5 

or*/a,(O) m 
---L-- 7 
m = l  r n = 2  

0-0841 (0.0841) 0.0854 (0.0854) 
0.0444 (0.0444) 0.0598 (0.0598) 
0.0040 (0.0040) 0.0050 (0.0050) 
0.2099 (0.2104) 0.2132 (0,2135) 
0.1105 (0.1111) 0.1490 (0.1497) 
0.0100 (0.0100) 0.1246 (0.1252) 
0.0199 (04200) - - 
0.0296 (0.0300) - - 
0.0392 (0.0400) - - 

TABLE 1 

n 
1.03 
1.2 
2 
1.03 
1.2 
2 
2 
2 
2 

7 

m = l  

0.0942 
0.0694 
0.0250 
0.2353 
0.1729 
0.0622 
0.1222 
0.1807 
0.2367 

wr*/a,(O) m 

(0.0942) 0,0944 
(0.0694) 0,0741 
(0.0250) 0.0531 
(0.2356) 0.2359 
(0.1736) 0.1848 
(0.0625) 0.1321 
(0.1250) 0.2603 
(0.1875) 0.3814 
(0.2500) 0.4941 

m = 2  

(0.0944) 
(0.0741) 
(0.0531) 
(0.2361) 
(0.1852) 
(0.1328) 
(0.2656) 
(0.3984) 
(0.53 1 2) 

shown in parentheses. The spaces left blank are unavailable from Sozou & Swithen- 
bank's table. On the whole, our expression appears to be satisfactorily close t o  the 
numerical results, as long as the swirl Mach number, defined by them as Qr*/u,(O), 
remains below 1.  
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